7 research outputs found

    Asymmetric Diels-Alder Reaction of 5,5,5-Trichloro-3-penten-2-one and Its Related Compound

    Get PDF
    Diels-Alder reactions of 5,5,5-trichloro-3-penten-2-one and ethyl 4,4,4-trichloro-2-butenoate with cyclopentadiene in the presence of a chiral Lewis acid gave exo-2-acetyl-endo-3-trichloromethyl-bicyclo[2.2.1]hept-5-ene and exo-2-ethoxycarbonyl-endo-3-trichloromethylbicyclo[2.2.1]hept-5-ene with 40% and 7% e.e., respectively

    Producing alternating gait on uncoupled feline hindlimbs: muscular unloading rule on a biomimetic robot

    Get PDF
    Studies on decerebrate walking cats have shown that phase transition is strongly related to muscular sensory signals at limbs. To further investigate the role of such signals terminating the stance phase, we developed a biomimetic feline platform. Adopting link lengths and moment arms from an Acinonyx jubatus, we built a pair of hindlimbs connected to a hindquarter and attached it to a sliding strut, simulating solid forelimbs. Artificial pneumatic muscles simulate biological muscles through a control method based on EMG signals from walking cats (Felis catus). Using the bio-inspired muscular unloading rule, where a decreasing ground reaction force triggers phase transition, stable walking on a treadmill was achieved. Finally, an alternating gait is possible using the unloading rule, withstanding disturbances and systematic muscular changes, not only contributing to our understanding on how cats may walk, but also helping develop better legged robots.The authors acknouledge the Japanese Research Grant KAKENHI Kiban 23220004 and 25540117.This is the author accepted manuscript. The final version is available from Taylor & Francis via http://dx.doi.org/10.1080/01691864.2013.87049

    The Whitham Deformation of the Dijkgraaf-Vafa Theory

    Full text link
    We discuss the Whitham deformation of the effective superpotential in the Dijkgraaf-Vafa (DV) theory. It amounts to discussing the Whitham deformation of an underlying (hyper)elliptic curve. Taking the elliptic case for simplicity we derive the Whitham equation for the period, which governs flowings of branch points on the Riemann surface. By studying the hodograph solution to the Whitham equation it is shown that the effective superpotential in the DV theory is realized by many different meromorphic differentials. Depending on which meromorphic differential to take, the effective superpotential undergoes different deformations. This aspect of the DV theory is discussed in detail by taking the N=1^* theory. We give a physical interpretation of the deformation parameters.Comment: 35pages, 1 figure; v2: one section added to give a physical interpretation of the deformation parameters, one reference added, minor corrections; v4: minor correction

    Exploring muscular contribution during stepping of biomimetic feline hindlimbs

    No full text
    This is the accepted manuscript. The final version is available at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6739573&tag=1.Although robotic locomotion have greatly advanced over the past years, the abyss that separates such locomotion from even the simplest animal locomotions prompt us to approach robotic locomotion taking cues from animals. The animal musculoskeletal structure, often ignored by roboticists due to its high redundancy and complexity, might hold the secret for self-stable locomotion observed in bipeds and quadrupeds. Aiming to better understand how muscles contribute to selfstable locomotion we take the feline structure as a model on a biomimetic approach. Using 6 air muscles per hindlimb to mimic real muscles, this robot walks stably on a treadmill while supported by a slider, simulating forelimbs. We individually evaluate muscle contribution to walking stability, performing a comparison between mono and biarticular synergistic muscles at the ankle and concluding that a higher compliance on the biarticular muscle improved walking stability. A better understanding of such complex phenomena may help on the development of better legged robots in the future, truly taking advantage of concepts developed by nature over the years.This work was partially supported by KAKENHI Kiban(S) 23220004
    corecore